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The oscillatory convection for a real system of fluids under the joint action of
buoyancy and thermocapillary effect is investigated. The nonlinear development of
the oscillatory instability is studied. Two types of boundary condition are considered.
In the case of periodic boundary conditions, regimes of either travelling waves or
standing oscillations have been found, depending on the period of the flow. For rigid
heat-insulated lateral walls, various types of symmetric and asymmetric standing
waves are obtained. Transitions between the motions with different spatial structures
are investigated. It is shown that in the case of rigid heat-insulated lateral walls the
period of oscillations changes non-monotonically. The nonlinear oscillations exist in
a finite interval of the Grashof number values, between the stability regions of a
quiescent state and stationary convection.

1. Introduction
The phenomenon of Rayleigh–Bénard convection in two-layer systems has been

studied extensively during the last few decades (see Simanovskii & Nepomnyashchy
1993; Colinet, Legros & Velarde 2001). In the case, when the ‘local’ Rayleigh numbers
determined by the parameters of the corresponding layer differ considerably, an
intensive convective motion arises only in one fluid and a weak induced motion
takes place in the second layer (Simanovskii 1979). If the Rayleigh numbers are
close, heat and hydrodynamic interactions on the interface play the dominant role.
The situation with close values of the local Rayleigh numbers was considered first
by Busse (1981). Two monotonic instability modes, corresponding to the onset of
convection in each fluid layer, have been found. However, the eigenvalues of the
linear stability problem can be complex in the case of a two-layer system, because the
stability problem is not self-adjoint (Simanovskii & Nepomnyashchy 1993). Hence,
an oscillatory instability is possible in general. Gershuni & Zhukhovitsky (1982) have
found a real system (the transformer oil–formic acid system) such that in a certain
interval of the wavenumbers, an oscillatory instability was predicted by the stability
analysis. However, the threshold value of the Rayleigh number for the oscillatory
instability was higher than that for the monotonic instability (which took place in
other intervals of wavenumbers). Therefore, the predicted instability could not be
observed in experiments.

In order to diminish the oscillatory threshold below the monotonic one, some
‘artificial’ systems have been suggested (Gilev, Nepomnyashchy & Simanovskii 1987;
Rasenat, Busse & Rehberg 1989; Renardy 1996). The nonlinear oscillatory convective
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structures near the instability threshold have been studied by Colinet & Legros (1994)
and Renardy, Renardy & Fujimura (1999). Let us emphasize, that the oscillatory
instability was not predicted for any real system of fluids, because the critical Rayleigh
number for the oscillatory instability was always higher than that for the monotonic
instability.

Nevertheless, the oscillations just above the instability threshold have been observed
in the experiments of Degen, Colovas & Andereck (1998). It should be noted that
the linear stability theory for the onset of the buoyancy convection has predicted a
monotonic instability (Nepomnyashchy & Simanovskii 2004). The appearance of the
oscillations might be caused by the influence of the thermocapillary effect (Liu, Zhou &
Tang 2004; Nepomnyashchy & Simanovskii 2004).

In the present paper, we investigate the nonlinear regimes of the oscillatory
convection for a real system of fluids. As the top-layer fluid, we choose 2cS silicone
oil, Rhone Poulenc’s Rhodorsil 47v2, used in the experiments of Degen et al. (1998);
water is taken as the bottom-layer fluid. The influence of the thermocapillary effect
on the thermogravitational oscillations is taken into account. Attention is paid mainly
to the transitions between the motions with different spatial structures. In the case of
periodic boundary conditions, regimes of travelling waves and standing oscillations
have been obtained. In the case of rigid lateral walls, regimes of symmetric and
asymmetric oscillations have been found. It is shown that the region of the Grashof
number values, where nonlinear oscillations take place, is bounded both from below
(by the mechanical equilibrium state) and from above (by the steady state).

The paper is organized as follows. In § 2, the mathematical formulation of the
problem is presented and the nonlinear approach is described. In § 3, the influence of
the thermocapillary effect on the oscillatory mode of instability is studied. Nonlinear
simulations of oscillatory flow regimes are considered. Section 4 contains some
concluding remarks.

2. Formulation of the problem
2.1. Equations and boundary conditions

We consider a system of two horizontal layers of immiscible viscous fluids with
different physical properties. The system is bounded from above and from below
by two isothermic rigid plates kept at constant different temperatures (the total
temperature drop is θ). It is assumed that the interfacial tension σ decreases linearly
with the increase in the temperature: σ = σ0 − αT , where α > 0.

The variables referring to the top layer are marked by subscript 1, and the variables
referring to the bottom layer by subscript 2.

Assume that ρm, νm, ηm, κm, χm, βm and am are, respectively, density, kinematic and
dynamic viscosity, heat conductivity, thermal diffusivity, thermal expansion coefficient
and the thickness of the mth layer (m = 1, 2). Let us introduce the following non-
dimensional parameters, corresponding to parameter ratios of different fluids,

ρ = ρ1/ρ2, ν = ν1/ν2, η = η1/η2,

κ = κ1/κ2, χ = χ1/χ2, β = β1/β2,

and to the ratio of layers thicknesses,

a = a2/a1.

As the units of length, time, velocity, pressure and temperature we choose a1, a2
1/ν1,

ν1/a1, ρ1ν
2
1/a

2
1 and θ , respectively.
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The nonlinear equations of convection in the framework of the Boussinesq
approximation for both fluids have the following form (see Simanovskii &
Nepomnyashchy 1993):

∂vm

∂t
+ (vm · ∇)vm = −em∇pm + cm∇2vm + bmGTmγ , (1a)

∂Tm

∂t
+ vm · ∇Tm =

dm

P
∇2Tm, (1b)

∇ · vm = 0. (1c)

Here, vm = (vmx, vmy, vmz) is the velocity vector, Tm is the temperature and pm is the
pressure in the mth fluid; γ is the unit vector directed upwards; b1 = c1 = d1 = e1 = 1;
b2 = 1/β , c2 = 1/ν, d2 = 1/χ , e2 = ρ; G = gβ1θa3

1/ν
2
1 is the Grashof number, which

characterizes the buoyancy force, and P = ν1/χ1 is the Prandtl number for the liquid
in layer 1. The conditions on the isothermic rigid horizontal boundaries are:

z = 1 + a: v1 = 0, T1 = 0, (2)

z = 0: v2 = 0, T2 = 1. (3)

In order to be compatible with the system of equations (1), we assume that the inter-
face is flat, and it is located at z = 0. Indeed, the balance of normal stresses on the in-
terface shows that the interface deformation is proportional to 1/Gaδ (Simanovskii &
Nepomnyashchy 1993) where the Galileo number Ga = ga3

1/ν
2
1 determines the ratio

of the gravity and viscous forces, and the coefficient δ = ρ−1 − 1 characterizes the
difference between fluids densities. However, the Boussinesq approximation is based on
the assumption εβ = β1θ � 1, G= O(1), therefore the Galileo number Ga = G/εβ � 1.

Because 1/Gaδ = εβ/Gδ is small unless δ � 1, we conclude that in the framework of
the Boussinesq approximation, the interfacial deformation must be neglected, if the
densities of the fluids are not close to each other. (The case of close densities is not
considered in the present paper).

The boundary conditions on the interface include relations for the tangential stres-
ses:

z = a: η
∂v1x

∂z
=

∂v2x

∂z
+

ηM

P

∂T1

∂x
, η

∂v1y

∂z
=

∂v2y

∂z
+

ηM

P

∂T2

∂x
; (4)

the continuity of the velocity field:

v1 = v2; (5)

the continuity of the temperature field:

T1 = T2; (6)

and the continuity of the heat flux normal components:

κ
∂T1

∂z
− ∂T2

∂z
= 0. (7)

Here, M =αθa1/η1χ1 is the Marangoni number, which is the basic non-dimensional
parameter characterizing the thermocapillary effect.

The problem (1)–(7) for any choice of parameters has the solution:

v0
m = 0, pm = p0

m(z), Tm = T 0
m(z) (m = 1, 2), (8)
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corresponding to the quiescent state. The temperature gradients in the quiescent state
are:

A1 = dT 0
1 /dz = − 1

(1 + κa)
, A2 = dT 0

2 /dz = − κ

(1 + κa)
. (9)

Recall that in the case of a buoyancy convection in a one-layer system, the
monotonic instability threshold is determined by the Rayleigh number R = GP rather
than by the Grashof number G. Therefore, in the case M =0, it is convenient to
define the ‘local’ Rayleigh numbers

Rm =
gβm|Ām|a4

m

νmχm

(m = 1, 2), (10)

which are constructed using the parameters of the corresponding fluids (Ām is the
dimensional temperature gradient in the mth fluid). The values of Rm are connected
with the non-dimensional parameters in the following way:

R1 =
GP

1 + κa
, R2 =

GPκ

1 + κa

νχa4

β
. (11)

The ratio of local Rayleigh numbers,

r =
R2

R1

=
κνχa4

β
, (12)

depends on the physical properties of both fluids as well as on the ratio of thick-
nesses a.

In the case when the local Rayleigh numbers are essentially different from each
other (r � 1 or r � 1), we can easily distinguish between neutral stability curves
which correspond to the onset of convection in different layers. When the local
Rayleigh numbers are close, we can observe a mode mixing and the appearance of
an oscillatory instability, if the linearized eigenvalue problem is not self-adjoint; i.e. if
ηβχ/ν �= 1 or M �=0 (see Simanovskii & Nepomnyashchy 1993).

2.2. Numerical approach

In order to investigate the flow regimes generated by the convective instabilities,
we perform nonlinear simulations of two-dimensional flows (vmy = 0 (m = 1, 2); the
fields of physical variables do not depend on y). In this case, we can introduce the
streamfunction ψ

vmx =
∂ψm

∂z
, vmz = −∂ψm

∂x
(m = 1, 2).

Eliminating the pressure and defining the vorticity

φm =
∂vmz

∂x
− ∂vmx

∂z
,

we can rewrite the boundary-value problem (1)–(7) in the following form:

∂φm

∂t
+

∂ψm

∂z

∂φm

∂x
− ∂ψm

∂x

∂φm

∂z
= cm∇2φm + bmG

∂Tm

∂t
, (13)

∇2ψm = −φm, (14)

∂Tm

∂t
+

∂ψm

∂z

∂Tm

∂x
− ∂ψm

∂x

∂Tm

∂z
=

dm

P
∇2Tm (m = 1, 2). (15)

z = 1 + a: ψ1 =
∂ψ1

∂z
= 0, T1 = 0; (16)
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z = 0: ψ2 =
∂ψ2

∂z
= 0, T2 = 1; (17)

z = a: ψ1 = ψ2 = 0,
∂ψ1

∂z
=

∂ψ2

∂z
, φ2 = ηφ1 +

ηM

P

∂T1

∂x
; (18)

T1 = T2, κ
∂T1

∂z
=

∂T2

∂z
. (19)

The coefficients bm, cm and dm have been defined in § 2.1.
The calculations were performed in a finite region 0 � x � L, −a � z � 1 with the

following types of boundary conditions on the lateral boundaries:
(i) periodic boundary conditions:

ψm(x + L, z) = ψm(x, z); φm(x + L, z) = φm(x, z); Tm(x + L, z) = Tm(x, z); (20)

(ii) rigid heat-insulated boundaries:

x = 0, L: ψm =
∂ψm

∂x
=

∂Tm

∂x
= 0 (m = 1, 2). (21)

The boundary conditions (i) correspond to spatially periodic structures in a laterally
infinite two-layer system; the boundary conditions (ii) correspond to a closed cavity.
The problem (13)–(20) or (13)–(19), (21) is integrated in time with some initial
conditions for ψm and Tm (m = 1, 2) by means of a finite-difference method. Equations
and boundary conditions are approximated on a uniform mesh using a second-order
approximation for the spatial coordinates. The nonlinear equations are solved using
an explicit scheme on a rectangular uniform mesh 56 × 56 (L= 2.74), and 168 × 56
(L = 16). The Poisson equation is solved by the iterative Liebman successive over-
relaxation method on each time step; the accuracy of the solution is 10−5. Kuskova &
Chudov (1968) formulae, providing the second-order accuracy, are used for the
approximation of the vorticity on the solid boundaries.

At the interface, the expression for the vorticity is approximated with the second-
order accuracy for the spatial coordinates and have a form:

φ1 =
−2[ψ2(x, a − �z) + ψ1(x, a + �z)]

(�z)2(1 + η)
, (22)

φ2(x, a) = ηφ1(x, a). (23)

Here, �x, �z are the mesh sizes for the corresponding coordinates. The tempera-
tures on the interfaces are calculated by the second-order approximation formulae:

T1(x, a) = T2(x, a)

=
[4T2(x, a − �z) − T2(x, a − 2�z)] + κ[4T1(x, a + �z) − T1(x, a + 2�z)]

3(1 + κ)
. (24)

3. Generation of oscillations
We investigate the onset of the Rayleigh–Bénard convection in the 47v2 silicone

oil–water system with the following set of parameters: ν =2.0; η =1.7375; κ = 0.184;
χ =0.778; β = 5.66; P = 25.7. This system was used in experiments on the convection
in two-layer systems carried out by Degen et al. (1998). For the system under
consideration, the value of the ‘non-self-adjointness parameter’ ηβχ/ν = 3.83 is rather
far from 1, which is favourable for the appearance of an oscillatory instability.
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(a) (b)

Figure 1. Interaction between buoyancy and thermocapillarity. (a) The buoyancy convection
is in the bottom layer. (b) The buoyancy convection is in the top layer.
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Figure 2. The neutral curves for a = 1.6; K = 0.4.

The goal of the present nonlinear simulations is to find typical stable oscillatory
flow regimes. The analysis does not pretend to give a description of the full bifurcation
diagram for the complex nonlinear system (13)–(20) or (13)–(19), (21).

The discretized nonlinear problem is a dynamical system with a very large number
of variables. Nevertheless, the attractors observed in simulations are low-dimensional.

3.1. Infinite layers

We shall start our analysis by considering the case of infinite layers, where we can
use predictions of the linear theory (Nepomnyashchy & Simanovskii 2004). The
computations are carried out with periodic boundary conditions (20).

3.1.1. Predictions of the linear theory

Substituting the physical parameters of the system into relation (12), we find that
r = 0.05a4. Thus, r = 1 as a = a∗ = 2.1.

First, let us consider the case, corresponding to ‘pure’ buoyancy convection (M = 0).
If r < 1 (r > 1), the monotonic instability of the mechanical equilibrium state generates
an intensive convective motion in the top (bottom) layer and a relatively weak motion
in the bottom (top) layer.

However, in the case r ≈ 1, i.e. a ≈ a∗, two instability modes, corresponding to the
onset of convection in each layer, determine two minima of monotonic instability
curves located at essentially different values of the wavenumber. For the intermediate
values of the wavenumber, an oscillatory instability takes place, which is caused by
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Figure 3. Snapshots of (a(i) − c(i)) streamlines and (a(ii) − c(ii)) isotherms for the travelling
wave at a =1.6; L =2.74; G = 100; K = 0.4; (a) t =0; (b) t = τ/4; (c) t = τ/2, where τ is the
period. The wave moves from the right- to the left-hand side.
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Figure 4. The dependence of the period of oscillations on the Grashof number.
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Figure 5. (a) Streamlines and (b) isotherms for the steady state (G=112); L = 2.74.

the hydrodynamic and thermal interaction between convective motions on both sides
of the interface.

Let us emphasize that for any values of a, the minimum of the neutral curve
does not correspond to an oscillatory instability. No oscillatory regimes of convection
have been obtained in nonlinear simulations with M = 0 (see Nepomnyashchy &
Simanovskii 2004).

Let us discuss now the case of the combined action of the thermocapillary effect
and the buoyancy. In the case r > 1, where the buoyancy convection takes place
mainly in the bottom layer, a temperature disturbance on the interface generates
buoyancy volume forces and thermocapillary tangential stresses acting in the same



Nonlinear development of oscillatory instability in a two-layer system 185

(a) 0.15900
0.08150
0.00437

–0.07280
–0.15000

0.15900

0 1 2

0 1 2
0

1

2

1

2

0

1

2

0 1 2

0

0.08170
0.00447

–0.07270
–0.15000

0.15900
0.08150
0.00446

–0.07260
–0.15000

(b)

(c)

Figure 6. Snapshots of streamlines for the travelling wave at G = 125, K = 5.75, L= 2.74.
(a) t = 0; (b) t = τ/4; (c) t = τ/2, where τ is the period. The wave moves from the right- to the
left-hand side.

direction (see figure 1a). In this case, the action of the thermocapillary effect leads
to a decrease of the minimized critical Grashof number. In the opposite case r < 1,

where the buoyancy convection arises first in the top layer, the buoyancy volume
forces and thermocapillary tangential stresses act in the opposite way (see figure 1b).
The asynchronic action of two factors working in the opposite direction can produce
an overstability.

Under the conditions of the experiment, when the geometric configuration of the
system is fixed while the temperature difference θ is changed, the Marangoni number
M and the Grashof number G are proportional. Define the inverse dynamic Bond
number

K =
M

GP
=

α

gβ1ρ1a
2
1

.
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Figure 7(a–d). A time sequence of snapshots of streamlines for the symmetric oscillatory
flow at G = 89, K = 0.365, L =5.48.
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Figure 8(a–d). A time sequence of snapshots of streamlines for the asymmetric oscillatory
flow at G =89, K = 0.365, L = 5.48.
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Figure 9(a–f ). A time sequence of snapshots of streamlines for the oscillatory flow at
G =89, K = 0.365, L = 16.
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Figure 10(a–f ). A time sequence of snapshots of streamlines for the symmetric
time-periodic motion during one period for G = 97; L = 2.74.

As an example, let us consider the case a = 1.6, which corresponds to r =0.328. It
turns out that the minimum value of the Grashof number is achieved at the oscillatory
branch of the neutral curve, if the inverse dynamic Bond number K is inside a certain
interval, K− < K < K+. The computations show that K− ≈ 0.328, and K+ ≈ 0.411, if
a =1.6 (the coincidence between values of r and K− is casual). A typical neutral
curve in the region K− < K < K+ is shown in figure 2.

Thus, though the fluid system under consideration does not reveal any oscillations
in the absence of the thermocapillary effect, it is subject to an oscillatory instability
when the latter effect is taken into account. In our opinion, that can give the
explanation of the waves found by Degen et al. 1998. Taking a typical value α ∼ 0.07
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Figure 11. The dependence of the period of oscillations on the Grashof number for
symmetric (line 1) and asymmetric oscillations (lines 2 and 3).

dyn cm−1 K−1 for a silicone oil (Degen et al. does not contain measurements of α),
we obtain K = 0.33, which is inside the interval where the observation of waves is
predicted (Nepomnyashchy & Simanovskii 2004).

3.1.2. Simulations in a short computational region

A characteristic feature of the problem under consideration is the presence of two
instability modes, an oscillatory mode (figure 2, line 3) and a monotonic mode (figure 2,
line 4) with very close critical Grashof numbers. The interaction of these modes can
produce complex flow regimes.

In the present subsection, we consider the spatially periodic oscillatory regimes
generated solely by the oscillatory instability mode. In order to avoid the influence
of the monotonic instability mode, we fix the period of the computational region
L =2.74, which corresponds to the critical wavelength of the oscillatory instability at
K =0.4.

The linear theory predicts the oscillatory instability, but it is unable to predict
which kind of nonlinear regime, travelling waves or standing waves, will appear in
the supercritical region.

In order to answer this question, we have used the periodic boundary conditions
(20). We have found that above the threshold predicted by the linear stability theory,
a travelling wave is developed (see figure 3):

ψm(x, z, t) = ψm(x − ct, z), Tm(x, z, t) = Tm(x − ct, z), (25)

where c is the phase velocity of the travelling wave. Certainly, travelling waves with
opposite signs of c are possible.

In the case of a travelling wave, the maximum and minimum values of stream-
functions in both layers ψmax,m = max ψm(x, z) (m = 1, 2) are constant in time. For
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Figure 12(a–f ). A time sequence of snapshots of streamlines for the asymmetric
time-periodic motion during one period; G = 102.16; L = 2.74.

the wave moving to the left, the intensity of the positive vortex in the bottom fluid is
slightly larger than that of the negative vortex.

With the increase of G, the period of oscillations grows (see figure 4), i.e. the phase
velocity of waves decreases. This prediction coincides with the observations of Degen
et al. (1998). When G � 111, the oscillatory motion disappears and the system is at
steady state. The streamlines and isotherms, corresponding to the steady state are
shown in figure 5.

According to the predictions of the linear theory, the oscillatory instability in
an infinite two-layer system is replaced by a short-wave stationary instability
(corresponding to line 1 of figure 2) at K <K− and by a long-wave stationary
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Figure 13. The dependences of Sl,1 (line 1a) and Sr,1 (line 1b) on time for G =302.16.
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Figure 14. Phase trajectories for the asymmetric oscillations: (a)Sr1(Sl1); (b)Sl2(Sl1);
G = 302.16.

instability (corresponding to line 4 of figure 2) at K > K+. However, in a short
computational region, the latter instability cannot appear. Therefore, we obtain
travelling waves even for rather large values of K (see figure 6) where the Marangoni
effect is dominant.
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Figure 15. The dependences of Sl,1 (line 1a) and Sr,1 (line 1b) on time for G=573.
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Figure 16. (a) Streamlines and (b) isotherms for the steady state (G=580); L = 2.74.

3.1.3. Simulations in long computational regions

In a longer computational region (L = 5.48), the nonlinear flows are characterized by
the interaction of two instability modes, a long-wave stationary mode corresponding
to line 4 in figure 2, and a short-wave oscillatory mode corresponding to line 3 in fig-
ure 2. This interaction leads to a subcritical excitation of an oscillatory flow which can
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Figure 18. (a) Streamlines and (b) isotherms for the asymmetric steady flow; G = 125;
K = 0.19.

be considered as a certain nonlinear superposition of a long-wave nearly stationary
flow and a short-scale standing wave. This oscillatory regime is characterized by the
symmetry properties

ψm(L − x, z, t) = −ψm(x, z, t), Tm(L − x, z, t) = Tm(x, z, t) (m = 1, 2), (26)

and is observed in a wide interval of G, in both subcritical and supercritical regions.
The snapshots of oscillations during half of the period are shown in figure 7.
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Figure 19. (a) Streamlines and (b) isotherms for the symmetric steady flow at the same
values of parameters G and K as in figure 18.
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Figure 20. Phase trajectory in the plane (Sl1, Sr1) for G =125; K = 10.

In a narrow interval of G around G =89, we can obtain also another, asymmetric,
kind of flow (figure 8) for the same values of parameters. The fields of streamfunctions
for this flow contain some fragments resembling the corresponding fields for the
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Figure 21. The general diagram of flow regimes in the plane (K, G). �, equilibrium; ∗, sym-
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flow. Line 1: upper boundary of the stability region of the equilibrium; line 2: transition
between symmetric and asymmetric oscillations; line 3: left-hand boundary of the stability
region of the asymmetric steady flow; line 4: transition between asymmetric oscillations and
asymmetric steady flow; line 5: right-hand boundary of the stability region of the symmetric
steady flow.

travelling wave. Nevertheless, there is no total motion of this structure during the
period of oscillations. Below and above this interval, the asymmetric solution is
unstable, and the system tends to a symmetric state.

Similar asymmetric periodic oscillations are observed in longer computational
regions, but the spatial structure of the flow becomes more complicated (see figure 9).
Note that dynamical regimes which combine stationary and oscillatory flow
components were formerly studied in the problem of magnetoconvection with the
depth-dependent ratio of ohmic to thermal diffusivity (Julien, Knobloch & Tobias
1999, 2000; see also Halford & Proctor 2002; Weiss 2002).

3.2. Closed cavities

3.2.1. Evolution of flow regimes by changing G

To simulate the motions in a closed cavity, we used rigid heat-insulated boundary
conditions (21) for L =2.74. With the increase of the Grashof number, the mechanical
equilibrium state becomes unstable and perfectly symmetric standing waves (type 1),
satisfying symmetry conditions (26), are developed near the instability threshold.
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Figure 22. For caption see next page.

The snapshots of streamlines during one period of oscillations are presented in
figure 10. The direction of the rotation is first changed in the bottom layer, and
a two-store structure is produced in the top layer (figure 10c). Then, the vortices
generated near the interface oust the ‘main’ vortices located in the upper part of the
top layer (figure 10d). Thus, the direction of the vortices rotation is changed during
half of the period (cf. figures 10a and 10d), and the process is repeated (figures 10f ,
10a).

With the increase of the Grashof number, the period of oscillations decreases (see
line 1 in figure 11). This type of symmetric oscillation takes place in the region
95.5 � G � 98.5. When G > 98.5, the symmetric oscillations become unstable, and
asymmetric oscillations (type 2) develop in the system. We failed to find any hysteresis
between two types of oscillation. The snapshots of streamlines for this type of
oscillation are presented in figure 12. The latter type of oscillation is characterized by
the appearance of vortices of a relatively large horizontal size in the bottom layer.
We can see, that for this type of oscillation the symmetry properties are violated.
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Figure 22. A time sequence of snapshots of (i) streamlines and (ii) isotherms for a
symmetric oscillatory flow at G = 101.3, K = 0.4, L = 16.

At the larger values of G, the period of oscillations continues to decrease (line 2 in
figure 11). When G > 283, the asymmetric oscillations become complicated.

In order to describe the time evolution of the solution, we use four integral variables
defined in the following way:

Sl1(t) =

∫ L/2

0

dx

∫ 1+a

a

dzψ1(x, z, t), Sr1(t) =

∫ L

L/2

dx

∫ 1

a

dzψ1+a(x, z, t), (27)

Sl2(t) =

∫ L/2

0

dx

∫ a

0

dzψ2(x, z, t), Sr2(t) =

∫ L

L/2

dx

∫ a

0

dzψ2(x, z, t). (28)

Though these variables lack a clear physical meaning, they are sufficient for a
qualitative understanding of the spatial structure of the flow (location of positive and
negative vortices), the symmetry of the flow and the type of attractor.
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Figure 23. For caption see next page.

The dependences of Sl1(t), Sr1(t) (m = 1, 2) and the corresponding phase trajectories
are shown in figures 13 and 14. At G > 475, the period of oscillations grows
rapidly (line 3 in figure 11). For both functions Sl1(t), Sr1(t) we observe a ‘plateau’
(see figure 15). With a further increase of G the oscillations disappear. For G close
to G∗ = 576.5, the period of oscillations τ satisfies the relation τ−2 ∼ G∗ − G, which
is characteristic for a saddle-node bifurcation. When G > G∗, the steady two-vortex
motion takes place in the system. The streamlines and isotherms of the steady state
are presented in figure 16.

It means that the oscillatory motion takes place in an interval of the Grashof num-
ber values bounded both from below – by the mechanical equilibrium state- and from
above – by the steady state (see also Colinet & Legros 1994; Le Bars & Davaille 2002).

3.2.2. Evolution of flow regimes by changing K

Let us discuss now the influence of the inverse dynamic Bond number K on the
flow regimes for a fixed value of the Grashof number G in a cavity with L = 2.74.
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Figure 23. A time sequence of snapshots of (i) streamlines and (ii) isotherms for an
asymmetric oscillatory flow at G = 125, K =0.4, L =16.

Recall, that for a =1.6, R2 < R1 (see § 3.1.1). Therefore, the decrease of K (weakening
of the thermocapillary effect) makes the development of the stationary convection in
the top layer more favourable. Indeed, with the decrease of K , the oscillations period
increases (see figure 17), and finally, a steady asymmetric flow regime is developed
(figure 18). If K continues to decrease, we observe a transition into a symmetric flow
with the intensity of motion in the top layer much stronger than that in the bottom
layer (see figure 19). The stability region of the symmetric stationary flow overlaps
with the stability regions of the asymmetric stationary flow and with that of the
asymmetric oscillations.

The growth of K is favourable for the development of the stationary instability
in the bottom layer. However, the thickness of the bottom layer, and hence the
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Figure 24. Snapshots of (a) streamlines and (b) isotherms for a stationary flow at G = 410,
K =0.4, L = 16.

characteristic size of bottom-layer convective cells, are significantly larger than the
corresponding characteristics of the top layer. The cavity with L =2.74 turns out
to be too short for the development of steady bottom-layer convective cells. We
performed simulations up to K = 5.75, and we did not observe any transitions from
the oscillatory to the steady regimes with the growth of K. The period of oscillations
decreases with the growth of K (see figure 17). At K � 4, the periodic motion is
replaced by an apparently quasi-periodic motion (see figure 20). The general diagram
of regimes in the plane (K, G) is shown in figure 21.

3.2.3. Flow regimes in long cavities

As in the case of long computational regions with spatially periodic conditions,
the nonlinear regimes in long cavities are developed owing to the interaction of two
instability modes, a stationary one and an oscillatory one. A typical flow contains
a symmetric nearly stationary structure in the middle of the cavity, while some
oscillations take place near the lateral boundaries (see figure 22). With the growth of
G, the symmetry is broken (see figure 23). For sufficiently large G, a stationary flow
is established (see figure 24).

4. Conclusion
The nonlinear development of the oscillatory instability in a two-layer system in the

presence of buoyancy and thermocapillary effect, is investigated. Different types of
boundary conditions on the lateral walls are used. It is shown that for the real system
of fluids under the joint action of buoyancy and thermocapillary effects, the oscillatory
instability may lead to different non-steady regimes. In the case of periodic boundary
conditions, regimes of travelling waves and standing oscillations have been obtained.
In the case of rigid boundary conditions, we observed symmetric and asymmetric
standing waves. With the increase of the Grashof number, the period of oscillations
increases in the case of periodic boundary conditions and changes non-monotonically
in the case of rigid lateral walls. It is found that for both periodic boundary conditions
and rigid heat-insulated lateral walls, the oscillatory motion is observed in a finite
interval of the Grashof number values.
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